Spectral Methods for Parameterized Matrix Equations
نویسندگان
چکیده
منابع مشابه
Spectral Methods for Parameterized Matrix Equations
We apply polynomial approximation methods—known in the numerical PDEs context as spectral methods—to approximate the vector-valued function that satisfies a linear system of equations where the matrix and the right-hand side depend on a parameter. We derive both an interpolatory pseudospectral method and a residual-minimizing Galerkin method, and we show how each can be interpreted as solving a...
متن کاملA Factorization of the Spectral Galerkin System for Parameterized Matrix Equations: Derivation and Applications
Recent work has explored solver strategies for the linear system of equations arising from a spectral Galerkin approximation of the solution of PDEs with parameterized (or stochastic) inputs. We consider the related problem of a matrix equation whose matrix and right-hand side depend on a set of parameters (e.g., a PDE with stochastic inputs semidiscretized in space) and examine the linear syst...
متن کاملOn the solving matrix equations by using the spectral representation
The purpose of this paper is to solve two types of Lyapunov equations and quadratic matrix equations by using the spectral representation. We focus on solving Lyapunov equations $AX+XA^*=C$ and $AX+XA^{T}=-bb^{T}$ for $A, X in mathbb{C}^{n times n}$ and $b in mathbb{C} ^{n times s}$ with $s < n$, which $X$ is unknown matrix. Also, we suggest the new method for solving quadratic matri...
متن کاملSpectral Methods for Tempered Fractional Differential Equations
In this paper, we first introduce fractional integral spaces, which possess some features: (i) when 0 < α < 1, functions in these spaces are not required to be zero on the boundary; (ii)the tempered fractional operators are equivalent to the Riemann-Liouville operator in the sense of the norm. Spectral Galerkin and Petrov-Galerkin methods for tempered fractional advection problems and tempered ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2010
ISSN: 0895-4798,1095-7162
DOI: 10.1137/090755965